An activity making various patterns with 2 x 1 rectangular tiles.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

These practical challenges are all about making a 'tray' and covering it with paper.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Here is a version of the game 'Happy Families' for you to make and play.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

How many models can you find which obey these rules?

Explore the triangles that can be made with seven sticks of the same length.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you make the birds from the egg tangram?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What do these two triangles have in common? How are they related?

Can you deduce the pattern that has been used to lay out these bottle tops?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Exploring and predicting folding, cutting and punching holes and making spirals.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?