This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

These pictures show squares split into halves. Can you find other ways?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

These practical challenges are all about making a 'tray' and covering it with paper.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

An activity making various patterns with 2 x 1 rectangular tiles.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

How many models can you find which obey these rules?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Explore the triangles that can be made with seven sticks of the same length.

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you make the birds from the egg tangram?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?