Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many models can you find which obey these rules?

These pictures show squares split into halves. Can you find other ways?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

These practical challenges are all about making a 'tray' and covering it with paper.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you make the birds from the egg tangram?

For this activity which explores capacity, you will need to collect some bottles and jars.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Explore the triangles that can be made with seven sticks of the same length.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?