How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

An activity making various patterns with 2 x 1 rectangular tiles.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Can you find ways of joining cubes together so that 28 faces are visible?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

How many models can you find which obey these rules?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

An investigation that gives you the opportunity to make and justify predictions.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How many faces can you see when you arrange these three cubes in different ways?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Investigate the different ways you could split up these rooms so that you have double the number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?