Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Bernard Bagnall describes how to get more out of some favourite NRICH investigations.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Investigate these hexagons drawn from different sized equilateral triangles.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Why does the tower look a different size in each of these pictures?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Here are many ideas for you to investigate - all linked with the number 2000.

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

Investigate and explain the patterns that you see from recording just the units digits of numbers in the times tables.

Investigate what happens when you add house numbers along a street in different ways.

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

How many different sets of numbers with at least four members can you find in the numbers in this box?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

An investigation that gives you the opportunity to make and justify predictions.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Investigate the number of faces you can see when you arrange three cubes in different ways.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

What is the largest cuboid you can wrap in an A3 sheet of paper?