While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Here are many ideas for you to investigate - all linked with the number 2000.

Bernard Bagnall describes how to get more out of some favourite NRICH investigations.

Investigate these hexagons drawn from different sized equilateral triangles.

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

Investigate and explain the patterns that you see from recording just the units digits of numbers in the times tables.

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

An investigation that gives you the opportunity to make and justify predictions.

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

Investigate what happens when you add house numbers along a street in different ways.

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Why does the tower look a different size in each of these pictures?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How many faces can you see when you arrange these three cubes in different ways?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

A follow-up activity to Tiles in the Garden.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Investigate the different ways you could split up these rooms so that you have double the number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In how many ways can you stack these rods, following the rules?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

What is the largest cuboid you can wrap in an A3 sheet of paper?