Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

It starts quite simple but great opportunities for number discoveries and patterns!

How many models can you find which obey these rules?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

In how many ways can you stack these rods, following the rules?

A follow-up activity to Tiles in the Garden.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

In this investigation, we look at Pascal's Triangle in a slightly different way - rotated and with the top line of ones taken off.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

An investigation that gives you the opportunity to make and justify predictions.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you find ways of joining cubes together so that 28 faces are visible?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

What do these two triangles have in common? How are they related?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.