An investigation that gives you the opportunity to make and justify predictions.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

How many different sets of numbers with at least four members can you find in the numbers in this box?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

In how many ways can you stack these rods, following the rules?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Investigate the different ways you could split up these rooms so that you have double the number.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Investigate the number of faces you can see when you arrange three cubes in different ways.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Investigate and explain the patterns that you see from recording just the units digits of numbers in the times tables.

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?