How many faces can you see when you arrange these three cubes in different ways?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What is the largest cuboid you can wrap in an A3 sheet of paper?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

What do these two triangles have in common? How are they related?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

A follow-up activity to Tiles in the Garden.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How many models can you find which obey these rules?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

An activity making various patterns with 2 x 1 rectangular tiles.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Why does the tower look a different size in each of these pictures?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

An investigation that gives you the opportunity to make and justify predictions.

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you find ways of joining cubes together so that 28 faces are visible?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?