Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

In how many ways can you stack these rods, following the rules?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Investigate the different ways you could split up these rooms so that you have double the number.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

How many models can you find which obey these rules?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

How many different sets of numbers with at least four members can you find in the numbers in this box?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

An activity making various patterns with 2 x 1 rectangular tiles.

Investigate what happens when you add house numbers along a street in different ways.