In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Investigate what happens when you add house numbers along a street in different ways.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

Why does the tower look a different size in each of these pictures?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Investigate these hexagons drawn from different sized equilateral triangles.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Bernard Bagnall describes how to get more out of some favourite NRICH investigations.

How many different sets of numbers with at least four members can you find in the numbers in this box?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Investigate the different ways you could split up these rooms so that you have double the number.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

In how many ways can you stack these rods, following the rules?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

How many models can you find which obey these rules?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?