This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

What do these two triangles have in common? How are they related?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you find ways of joining cubes together so that 28 faces are visible?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

How many models can you find which obey these rules?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

What is the largest cuboid you can wrap in an A3 sheet of paper?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?