This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

A challenging activity focusing on finding all possible ways of stacking rods.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

How many models can you find which obey these rules?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

It starts quite simple but great opportunities for number discoveries and patterns!

In how many ways can you stack these rods, following the rules?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

An activity making various patterns with 2 x 1 rectangular tiles.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Investigate the different ways you could split up these rooms so that you have double the number.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?