Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Investigate what happens when you add house numbers along a street in different ways.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

How many different sets of numbers with at least four members can you find in the numbers in this box?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Investigate and explain the patterns that you see from recording just the units digits of numbers in the times tables.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Ben has five coins in his pocket. How much money might he have?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?