There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

These pictures show squares split into halves. Can you find other ways?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

An activity making various patterns with 2 x 1 rectangular tiles.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Sort the houses in my street into different groups. Can you do it in any other ways?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many models can you find which obey these rules?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

In how many ways can you stack these rods, following the rules?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Investigate what happens when you add house numbers along a street in different ways.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?