Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Imagine a strip with a mark somewhere along it. Fold it in the middle so that the bottom reaches back to the top. Stetch it out to match the original length. Now where's the mark?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

It's like 'Peaches Today, Peaches Tomorrow' but interestingly generalized.

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

Keep constructing triangles in the incircle of the previous triangle. What happens?

What happens when a procedure calls itself?

This problem explores the biology behind Rudolph's glowing red nose.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

A Short introduction to using Logo. This is the first in a twelve part series.