This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Can you use the information to find out which cards I have used?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Throughout these challenges, the touching faces of any adjacent dice must have the same number. Can you find a way of making the total on the top come to each number from 11 to 18 inclusive?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Can you find a reliable strategy for choosing coordinates that will locate the treasure in the minimum number of guesses?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

56 406 is the product of two consecutive numbers. What are these two numbers?

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

Amy's mum had given her £2.50 to spend. She bought four times as many pens as pencils and was given 40p change. How many of each did she buy?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

In 1871 a mathematician called Augustus De Morgan died. De Morgan made a puzzling statement about his age. Can you discover which year De Morgan was born in?

Can you make a 3x3 cube with these shapes made from small cubes?

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

Can you number the vertices, edges and faces of a tetrahedron so that the number on each edge is the mean of the numbers on the adjacent vertices and the mean of the numbers on the adjacent faces?