Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Amy's mum had given her £2.50 to spend. She bought four times as many pens as pencils and was given 40p change. How many of each did she buy?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

56 406 is the product of two consecutive numbers. What are these two numbers?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?