Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

There were 22 legs creeping across the web. How many flies? How many spiders?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Use the information to work out how many gifts there are in each pile.

Use five steps to count forwards or backwards in 1s or 10s to get to 50. What strategies did you use?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you find a path from a number at the top of this network to the bottom which goes through each number from 1 to 9 once and once only?

Find out why these matrices are magic. Can you work out how they were made? Can you make your own Magic Matrix?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Amy's mum had given her £2.50 to spend. She bought four times as many pens as pencils and was given 40p change. How many of each did she buy?