Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Amy's mum had given her £2.50 to spend. She bought four times as many pens as pencils and was given 40p change. How many of each did she buy?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you find a path from a number at the top of this network to the bottom which goes through each number from 1 to 9 once and once only?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

Use five steps to count forwards or backwards in 1s or 10s to get to 50. What strategies did you use?

Use these four dominoes to make a square that has the same number of dots on each side.

There were 22 legs creeping across the web. How many flies? How many spiders?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Can you use the information to find out which cards I have used?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you make a 3x3 cube with these shapes made from small cubes?

In 1871 a mathematician called Augustus De Morgan died. De Morgan made a puzzling statement about his age. Can you discover which year De Morgan was born in?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?