Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you go from A to Z right through the alphabet in the hexagonal maze?

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Use the information to work out how many gifts there are in each pile.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

How many starfish could there be on the beach, and how many children, if I can see 28 arms?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Can you find a path from a number at the top of this network to the bottom which goes through each number from 1 to 9 once and once only?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

Throughout these challenges, the touching faces of any adjacent dice must have the same number. Can you find a way of making the total on the top come to each number from 11 to 18 inclusive?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

What do you notice about these squares of numbers? What is the same? What is different?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you use the information to find out which cards I have used?

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

Use five steps to count forwards or backwards in 1s or 10s to get to 50. What strategies did you use?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

In 1871 a mathematician called Augustus De Morgan died. De Morgan made a puzzling statement about his age. Can you discover which year De Morgan was born in?