Domino sets solution by Shaunak

When you buy a set of 0-6 dominoes they often come in cardboard boxes - and those boxes sometimes don't last very long!
What if you were given lots of dominoes in a bag?
Before you started playing it might be a good idea to find out if you have a full set!
How would you go about it?
How could you be sure?
I think I would be sure that there are supposed to be 28 dominoes by counting the possible number of dominoes. I would go:

$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$	$(0,6)$
$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	
$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$		
$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$			
$(4,4)$	$(4,5)$	$(4,6)$				
$(5,5)$	$(5,6)$					
$(6,6)$						

This has 28 sets, so I would be sure that there should be 28 dominoes.
I also have a formula to calculate the number of dominoes. This formula states that if there are $0-n$ dominoes, then there will be $(n+1)(n+2) / 2$ dominoes in total. This is the triangular numbers formula, which has been modified so that it suits this problem.

What if someone gave you some 0-9 dominoes?
How many do you think there would be in a full set?
Using the above formula, I would predict a 0-9 set of dominoes would contain $(10)(11) / 2=55$ dominoes.
how I arranged my dominoes. This way of arranging gave me the idea of using the triangular numbers formula:

