Perimeter Possibilities

Here are the dimensions of two rectangles with an area of $24 \mathrm{~cm}^{2}$. They have different perimeters.

How many other possible perimeters can you find, for a rectangle with an area of $\mathbf{2 4} \mathrm{cm}^{2}$?

Rectangle	Perimeter
$4 \mathrm{~cm} \times 6 \mathrm{~cm}$	20 cm
$2 \mathrm{~cm} \times 12 \mathrm{~cm}$	28 cm
\ldots	\ldots

If the side lengths are fractions it is possible to have an odd perimeter. What other odd perimeters can you make?

Rectangle	Perimeter
$11 / 2 \mathrm{~cm} \times 16 \mathrm{~cm}$	35 cm
\ldots	\ldots

Here are some questions to consider:

- What is the smallest perimeter you can make if the area is $24 \mathrm{~cm}^{2}$?
- What about the largest?
- Which perimeters in between is it possible to make?

And more generally:

- Is it possible to make a rectangle with a fractional perimeter but a whole number area?
- Is it possible to make a rectangle with a whole number perimeter but a fractional area?

