

Stage 4 ★★**Mixed Selection 1 - Solutions****1. Hillwalking**

If the distance along the flat was f km and the distance up the hill was h km, then since $Speed = \frac{Dist.}{Time} \Rightarrow Time = \frac{Dist.}{Speed}$ the total time taken was: $\frac{f}{4} + \frac{h}{3} + \frac{h}{6} + \frac{f}{4} = \frac{f}{2} + \frac{h}{2} = 2$. Then, doubling this gives $f + h = 4$.

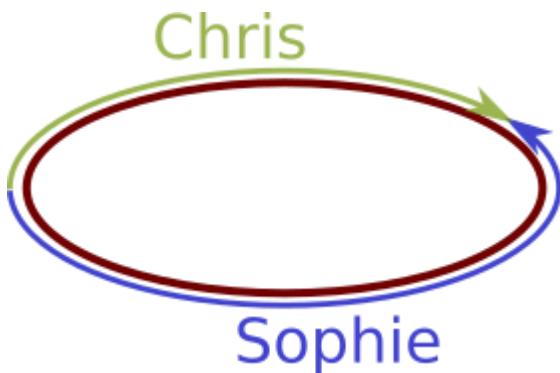
The total distance walked is $2(f + h) = 2 \times 4 = 8$ km.

2. Traffic jam

Write d for the distance of Emily's journey (note that this doesn't change), and t for the time it usually takes her. Then, in normal circumstances, her average speed is $\frac{d}{t}$.

Yesterday, her journey took 25% longer than usual, meaning an increase of $0.25t$, so the time was $1.25t$. The distance was the same as usual.

Her average speed was therefore $\frac{d}{1.25t} = \frac{1}{1.25} \times \frac{d}{t} = 0.8 \frac{d}{t}$. This means she travelled at 0.8 of her usual average speed, which is a reduction of 0.2 or 20%.


3. Travelator

Relative to someone not on the walkway, Andrew is moving with a speed of $6 + 4 = 10$ km/h. Bill is moving at the same 4 km/h of the walkway.

Since $Speed = \frac{\text{Distance}}{\text{Time}}$, we get that $Time = \frac{\text{Distance}}{\text{Speed}}$. Therefore, Andrew takes $0.5\text{km} \div 10\text{km/h} = 0.05\text{h}$ to get to the end of the walkway. In this time, Bill has travelled $0.05\text{h} \times 4\text{km/h} = 0.2\text{km} = 200\text{m}$. Since Andrew has travelled 500m, this means he is 300m in front.

4. Backwards laps

In 24 seconds, the distance that Chris runs added to the distance that Sophie runs must be a whole lap. This is shown in the diagram below, which shows their journeys over 24 seconds.

In 24 seconds, Chris runs $24/60 = 2/5$ of a lap, so Sophie must run $3/5$ of a lap in 24 seconds. So she runs $1/5$ of a lap in $24 \div 3 = 8$ seconds, and so she runs a whole lap in $8 \times 5 = 40$ seconds.

A fuller solution is available at: <https://nrich.maths.org/12890/solution>