

What's the most efficient design for a terrarium?

Page 1

Page 2

Page 3

BRIEF

Sales of terrariums have dropped at Gardens R Us.

Pitch a successful design for an innovative new terrarium and your team could be offered a valuable contract.

Your design must be produced from a 1m² sheet of acrylic and should produce as little waste material as possible.

Page 5

Team A has already put forward this design.

What are its strengths and weaknesses?

☆ Consider a selection of potential designs
☆ Would you like your terrarium to hang or sit on a surface?
☆ How easy and efficient will each design be to produce?
☆ What size will each face be?
☆ How much waste will be produced from the Lm² sheet of acrylic?
☆ Which shapes tessellate and why?
☆ Bearing this in mind, make any alterations to your design in order to minimise waste material What will you suggest as a selling price? Why? How much profit will this generate?
☆ Assuming profits are split between your team and Gardens R Us in the ratio 1:9, how much

You should produce a portfolio to present to Gardens R Us at your sales pitch.

Page 7

Self-Assessment - Geometrical Reasoning (Designing a terrarium)

- . RED = No or very little evidence of objective being met
- AMBER = Some evidence of the objective being met
- . GREEN Objective is met and full understanding is shown

will you receive per terrarium sold?

Objective	Level	RAG
Use correct notation for money	3	
Use correct units for length and area	4	
Create nets of 3D shapes	4	
ncorporate squares and rectangles in your design (Accurate scale drawing produced)	4	
Calculate the area of squares / rectangles	- 4	
Incorporate quadrilaterals in your design (Accurate scale drawing produced)	5	
Research and calculate cost of production	5	
Share quantities in a given ratio	5	
Incorporate polygons in your design (Accurate scale drawing produced)	6	
identify shapes that tessellate	6	
Calculate the area of other quadrilaterals and polygons	6/7/8	
Calculate the surface area of 3D shapes	6/7/8	
Express area in om ¹ and m ¹ , correctly converting between them	7	
Explain why certain shapes tessellate by referring to the interior / exterior angles	7/8	
valuate strengths and weaknesses of final design, emphasizing strengths in prepared presentation		

Level:

H₂I: