Double Trouble

Charlie has been adding fractions in the sequence $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, ... where each fraction is half the previous one:

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$ $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$ $\frac{1}{2} + \frac{1}{4}$

Work out the answers to Charlie's sums. What do you notice? Will the pattern continue? How do you know?

Try writing an expression for

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^n}$$

Could you convince someone else that your expression is correct for all values of *n*?

Charlie drew a diagram to try to explain what was going on:

Use Charlie's diagram to explain why

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^{n}} = 1 - \frac{1}{2^{n}} = \frac{2^{n} - 1}{2^{n}}$$

Alison has been adding numbers in the sequence 1, 2, 4, 8 ... where each number is twice the previous one:

Work out the answers to Alison's sums. What do you notice? Will the pattern continue? How do you know?

Try writing an expression for

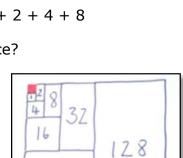
$$1 + 2 + 4 + \dots + 2^n$$

Could you convince someone else that your expression is correct for all values of *n*?

Alison drew a diagram to try to explain what was going on.

Can you use Alison's diagram to explain why

$$1 + 2 + 4 + \dots + 2^{n} = 2^{n+1} - 1$$



64

