Charlie has been adding fractions in the sequence $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ where each fraction is half the previous one:

$$
\frac{1}{2}+\frac{1}{4} \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8} \quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
$$

Work out the answers to Charlie's sums. What do you notice? Will the pattern continue? How do you know?

Try writing an expression for

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{2^{n}}
$$

Could you convince someone else that your expression is correct for all values of n ?

Charlie drew a diagram to try to explain what was going on:

Use Charlie's diagram to explain why
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}$

Alison has been adding numbers in the

 sequence $1,2,4,8 \ldots$ where each number is twice the previous one:$1+2$
$1+2+4$
$1+2+4+8$

Work out the answers to Alison's sums. What do you notice? Will the pattern continue? How do you know?
Try writing an expression for

$$
1+2+4+\cdots+2^{n}
$$

Could you convince someone else that your expression is correct for all values of n ?

Alison drew a diagram to try to explain what was going on.

Can you use Alison's diagram to explain why

$$
1+2+4+\cdots+2^{n}=2^{n+1}-1
$$

