

In the video at nrich.maths.org/8054, Alison works out the sum of the first twenty terms of the sequence:

2, 8, 32, 128, 512 ...

Here are two shots from the video:

2, 8, 32, 128,...

$$S=2$$
 2×4 2×4² 2×4³,... 2×4ⁿ
 $4S=2×4$ 2×4² 2×4³ 2×4^k,... 2×4ⁿ
 $S=2$ 2×4 2×4² 2×4³ 2×4^k,...
 $4S=2×4$ 2×4² 2×4² 2×4^k,...
 $4S=2×4$ 2×4² 2×4^k 2×4^k,...
 $3S=2×420 - 2$
 $S=2×420 - 2$
 $S=2×420 - 2$

Can you adapt Alison's method to sum the following sequences?

- 3, 9, 27, 81, 243, ... up to the 15th term
- 5, 10, 20, 40, 80, ... up to the 12th term

•
$$\sum_{i=1}^{20} (3 \times 2^{i-1})$$

• $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, ... up to the 10th term

Can you find an expression for the following sum up to the nth term?

$$a, ar, ar^{2}, ar^{3}, \dots$$

http://nrich.maths.org/8054 © University of Cambridge