In the video at nrich.maths.org/8054, Alison works out the sum of the first twenty terms of the sequence:

$$
2,8,32,128,512 \ldots
$$

Here are two shots from the video:

$$
\begin{aligned}
& 2,8,32,128, \ldots \\
& 5=2 \quad 2 \times 4 \quad 2 \times 4^{2} 2 \times 4^{3}, \ldots \\
& 45=2 \times 4^{19} 2 \times 4^{2} 2 \times 4^{3} 2 \times 4^{4}, \ldots \\
& 2 \times 4^{30}
\end{aligned}
$$

$$
\begin{gathered}
S=2 \quad 2 \times 42 \times 4^{2} 2 \times 4^{3}, \ldots \\
45=2 \times 4+2 \times 4^{2} 2 \times 4^{3} 2 \times 4^{4}, \ldots x \\
3 S=2 \times 4^{20}-2 \\
S=\frac{2 \times 4^{20}-2}{3}
\end{gathered}
$$

Can you adapt Alison's method to sum the following sequences?

- $3,9,27,81,243, \ldots$ up to the 15 th term
- $5,10,20,40,80, \ldots$ up to the 12 th term
- $\sum_{i=1}^{20}\left(3 \times 2^{i-1}\right)$
- $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$ up to the 10 th term

Can you find an expression for the following sum up to the nth term?

$$
a, a r, a r^{2}, a r^{3}, \ldots
$$

