The three edge numbers are \(a, b, c \). Choose a pair of factors of \(a \); let \(a = xy \). Let us see if one of the factors is common with \(b \); let \(x \) be common factor of \(a \) and \(b \). Then in the vertex between \(a \) and \(b \) write \(x \). In the vertex between \(a \) and \(c \) write \(y \) but if \(y \) is not a common factor of \(a, c \) then the pair of factors \(x, y \) doesn't work. Then you have to repeat choice of factors of \(a \). If \(y \) is common to \(a, c \) then write \(y = z \). If \(x \neq z \) then the pair of factors \(x, y \) does not work. Then you move on to the next pair of factors of \(a \).

\[
\begin{align*}
\frac{\text{xyz}}{\text{abc}} &= \frac{x y z}{a b c} \\
\end{align*}
\]

Product of edge numbers is always the square of product of vertex numbers.
Q3. Case 1: Only edge number changing is a.

\[a \text{ is scaled by a factor of } n, \quad n \in \mathbb{N}, \quad n > 0 \]

The scale by which \(x \) and \(y \) have to be multiplied has to be the same so that \(z \) can compensate for the scaling.

The square root of \(x \) and \(y \) is \(\sqrt{n} \). This is why \(n \) should be positive.

The scaling of \(z \) should be \(\frac{1}{\sqrt{n}} \).

Case 2: Only edge numbers changing are \(a \) and \(b \).

\[a \quad \text{and} \quad b \quad \text{are scaled by a factor of } n \quad \text{each, } \quad n \in \mathbb{N}, \quad n > 0. \]

\[y \quad \text{is scaled by a factor of } i, \quad i > 0. \]

\[x \quad \text{is scaled by a factor of } k, \quad k > 0. \]

\[z \quad \text{is scaled by a factor of } i, \quad i > 0. \]

\[\frac{g \cdot k}{i} = n \quad \quad \text{(1)} \]

\[\frac{g}{i} = n \quad \quad \text{(2)} \]

\[i = 1 \quad \quad \text{(3)} \]

\[\frac{g}{i} = 1 \quad \quad \text{(4)} \]

\(\frac{g}{i} \times 3 \quad \Rightarrow \]

\[g = 1 \]

\[\frac{g \cdot k}{i} = n \]

\[\frac{k}{i} = n \]

\[i = 1 \]

Only \(x \) is scaled by a factor of \(n \).

Case 3: When \(b \) and \(c \) are all scaled by a factor of \(n \)

\[x, y, z \quad \text{all scaled by } \sqrt{n} \]

Q4. The only arithmetic group possible is

\[\frac{a}{x}, \quad b, \quad c, \quad \in \mathbb{Z} \]

\[y = n, \quad n > 1, \quad x = mn, \quad m \in \mathbb{Z} \]

\[z = ln, \quad \alpha \in \mathbb{Z} \]

\[\triangle \]