A Little Light Thinking

Imagine a machine that switches lights on according to certain rules. Here are some examples of possible rules that might switch on the lights:

$5 n+1$	$6 n+5$	$12 n+4$
$4 n$	$5 n-3$	$3 n+1$
$9 n-4$	$10 n-4$	$8 n+3$

If the rule is $8 n+3$, the following numbers will switch on the corresponding light: 3, 11, 19, ... 83, ... -13, ...

For each rule, can you find a few numbers that switch on the light?

What can you say about the rules where the numbers are:

- Always even?
- Always odd?
- Alternately odd and even?

In the table below, try to fill in at least three numbers that switch on lights for both the row and column rule.

	$5 n-3$	$3 n+1$	$9 n-4$	$10 n-4$	$8 n+3$
$5 n+1$					
$6 n+5$					
$12 n+4$					
$4 n$					

Not every cell can be filled in! Can you explain why some pairs of lights will never switch on together?
Can you find a rule to describe all the numbers that switch on a particular pair of lights?

Extension

If the two sequences are described by the rules $a n+b$ and $c n+d$, can you explain the conditions for determining whether the lights will ever switch on together?

