A country has decided to have just two different coins.
It has been suggested that these should be $3 z$ and $5 z$ coins.

The shops think this is a good idea since most totals can be made:

$2 \times 3 z+1 \times 5 z=11 z$

$7 \times 3 z+2 \times 5 z=31 z$

Unfortunately some totals can't be made, for example $4 z$.
Which totals can be made?
Is there a largest total that cannot be made?
How do you know?

They have decided that they will definitely have $3 z$ coins but can't make up their minds about the other coin.

Experiment with other pairings containing 3z, and explore which totals can be made.

Can you find a relationship between $3 z$, the second coin, and the totals that can and can't be made?

In other countries they have also decided to have just two coins, but instead of the $3 z$ coins they have chosen a different prime number.

Can you find a relationship between pairs of coin values and the totals that can and can't be made with them?

