All Tangled Up

By Oliver Feng, Olchfa School

It is harder to find out the sequence using turns and twists to reach any fraction than disentangle it. Now we will propose a 'reverse sequence' method – we find a sequence using turns and "backward-twists" to get a fraction to 0, then we reverse the sequence and replace those "backward-twists" with the normal twists (or "forward-twists") to get the required sequence to reach the fraction.

We define a 'backward-twist' as $x \rightarrow x-1$, which is an inverse operation of a 'forward-twist'. A turn is an inverse operation of itself.

All simplified fractions can be split into the following categories:

- 1. -1/n
- 2. -m/n
- 3. n/m
- 4. 1/n
- 5. -n/m
- 6. m/n

where 1 < m < n

Next, we will prove that Case 1 & 2 fractions can be taken back to 0 using turns and 'backward-twists'. The other cases can be reduced to Case 2. The resulting 'backward' sequence is the reverse order of the required 'tangle-up' sequence when all 'backward-twists' are replaced by "forward-twists".

Case 1: -1/n

We turn -1/n once then backward-twist n times. This is the reverse order of the sequence produced when we forward-twist n times from 0, then turn once.

Case 2: -m/n

We turn -m/n once into n/m then continue 'backward-twisting' until we get the first negative fraction.

Let n=km+r,

n/m = (km+r)/m = k + r/m, so we need 'backward-twist' k+1 times to get the first negative fraction:

r/m-1=-(m-r)/m.

As m < n and (m-r) < m, both numerator and denominator of the original fraction -m/n

have been reduced. We keep repeating the above procedure to -(m-r)/m until the fraction becomes of the form -1/a (a is a positive integer). This is Case 1. Then the required 'tangle-up sequence' is the reverse order of the sequence obtained above.

e.g.
$$-m/n = -4/9$$

 $\therefore k=2, r=1$

Then the 'backward sequence' generated by the reverse sequence method is

$$-4/9 \rightarrow 9/4 \rightarrow 5/4 \rightarrow 1/4 \rightarrow -3/4 \rightarrow 4/3 \rightarrow 1/3 \rightarrow -2/3 \rightarrow 3/2 \rightarrow 1/2 \rightarrow -1/2 \rightarrow 2 \rightarrow 1 \rightarrow 0$$

Then the 'Tangle-up sequence' is

$$0 \rightarrow 1 \rightarrow 2 \rightarrow -\frac{1}{2} \rightarrow \frac{1}{2} \rightarrow \frac{3}{2} \rightarrow -\frac{2}{3} \rightarrow \frac{1}{3} \rightarrow \frac{4}{3} \rightarrow -\frac{3}{4} \rightarrow \frac{1}{4} \rightarrow \frac{5}{4} \rightarrow \frac{9}{4} \rightarrow -\frac{4}{9}$$

Case 3: n/m

With k+1 backward-twists, we get n/m - (k+1) = -(m-r)/m, which is Case 2.

Case 4: 1/n

With one backward-twist, 1/n becomes -(n-1)/n, which is Case 2.

Case 5: -n/m

With one turn and one backward-twist, -n/m becomes m/n - l = -(n-m)/n. As n > m so -(n-m)/n is Case 2.

Case 6: m/n

With one backward-twist, m/n becomes -(n-m)/n, which is Case 2.

Furthermore, a negative integer n can be turned to give 1/n, which is Case 4, and positive integer n can be backward-twisted n times to get 0.

Therefore, any rational number can be turned and back-twisted to 0. When reversing the order, we can use turns and twists to reach it. A simple rule to achieve these is given below.

General Rule:

Starting with the targeted fraction/number

If a positive number/fraction is reached, backward-twist once; if it is a negative number/fraction, turn once.

When zero is reached, reverse the order.