Hexagon Slices

Age 11 to 14 Short

Challenge Level

This regular hexagon has been divided into four trapezia and one hexagon. If each of the five sections has the same perimeter, what is the ratio of the lengths p, q and r ?

https://nrich.maths.org/5690
Original Solution: https://nrich.maths.org/5690/solution

Additional Solutions by Canadian Academy, Class of 2024:

YoeEun Lee:

Divide the regular hexagon into six equilateral triangles.

Considering the upper left equilateral triangle:

Then considering the upper middle equilateral triangle:

All triangles are equilateral and symmetric, so:

Then for the upper trapezoid,

$$
P_{1}=p+(p+q+r)+p+p+(q+r)+p=5 p+2 q+2 r
$$

For the middle trapezoid,

$$
P_{2}=q+p+(q+r)+p+q+(p+q)+r+(p+q)=4 p+5 q+2 r
$$

For the hexagon,

$$
P_{3}=[r+(p+q)+r+(p+q)+r] \times 2=4 p+4 q+6 r
$$

Since all the polygons have the same perimeter,

$$
\begin{aligned}
5 p+2 q+2 r & =4 p+5 q+2 r \\
p & =3 q
\end{aligned}
$$

and

$$
\begin{aligned}
4 p+5 q+2 r & =4 p+4 q+6 r \\
q & =4 r
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& p: q: r=3(4 r): 4 r: r \\
& p: q: r=12: 4: 1
\end{aligned}
$$

Jinwoo Son, Soyoon Park, Jinho Kim:

Divide the regular hexagon vertically into 30-60-90 right triangles:

Considering the upper left 30-60-90 right triangle (since the base is half its hypotenuse):

Then by symmetry:

Then for the upper trapezoid,

$$
P_{1}=p+(p+q+r)+p+\frac{1}{2} p+(p+q+r)+\frac{1}{2} p=5 p+2 q+2 r
$$

For the middle trapezoid,

$$
\begin{aligned}
P_{2} & =q+\frac{1}{2} p+(p+q+r)+\frac{1}{2} p+q+\frac{1}{2}(p+q)+(p+q+r)+\frac{1}{2}(p+q) \\
& =4 p+5 q+2 r
\end{aligned}
$$

For the hexagon,

$$
P_{3}=\left[r+\frac{1}{2}(p+q)+(p+q+r)+\frac{1}{2}(p+q)+r\right] \times 2=4 p+4 q+6 r
$$

Since all the polygons have the same perimeter,

$$
\begin{aligned}
5 p+2 q+2 r & =4 p+5 q+2 r \\
p & =3 q
\end{aligned}
$$

and

$$
\begin{aligned}
4 p+5 q+2 r & =4 p+4 q+6 r \\
q & =4 r
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& p: q: r=3(4 r): 4 r: r \\
& p: q: r=12: 4: 1
\end{aligned}
$$

Kazuharu Nagamura, Devang Nair:

Dividing the regular hexagon into a large 30-60-90 right triangle and a large isosceles triangle (with the top and top-right sides having the same length):

Considering the 30-60-90 right triangle and its interior similar triangles (because sides are parallel):

since the hypotenuse is twice its base.
Considering the large isosceles triangle and its interior similar triangles (because sides are parallel):

since the horizontal and right sides have equal lengths.

Then:

Then for the upper trapezoid,

$$
P_{1}=p+(p+q+r)+p+(q+r)+2 p=5 p+2 q+2 r
$$

For the middle trapezoid,

$$
P_{2}=q+2 p+(q+r)+q+r+2(p+q)=4 p+5 q+2 r
$$

For the hexagon,

$$
P_{3}=[r+2(p+q)+r+r] \times 2=4 p+4 q+6 r
$$

Since all the polygons have the same perimeter,

$$
\begin{aligned}
5 p+2 q+2 r & =4 p+5 q+2 r \\
p & =3 q
\end{aligned}
$$

and

$$
\begin{aligned}
4 p+5 q+2 r & =4 p+4 q+6 r \\
q & =4 r
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& p: q: r=3(4 r): 4 r: r \\
& p: q: r=12: 4: 1
\end{aligned}
$$

