(i) If 2 ax =1 then log2+xloga=0 so
x= log2 log1/a .

(ii) To solve 1 2 x + 1 4 x =1 write y=( 1 2 )x then y2 +y=1 so y= -1±5 2 . It follows that
xlog0.5=log 5-1 2

giving x=0.69424 to 5 significant figures.
Note that this method introduces an extraneous root of the quadratic equation because y=( 1 2 )x is always positive.

(iii) Solving 1 2 x + 1 3 x =1, numerical approximation methods give x=0.7878849 to seven sig. figs.

Using the Newton Raphson method: f(x)= ax + bx -1, f'(x)= ax lna+ bx lnb and
xn+1 = xn - f( xn ) f'( xn ) .