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Introduction

This activity will introduce you to some of the most important ideas in computer pro-
gramming in an interactive, visual way. The activity is about a language for describing
pictures. You will use a computer program that lets you type a sentence in the language,
and shows you the picture that it describes. At first, the pictures you will make will be
simple combinations of stick figures: three men in a row, or one man supporting two
smaller men. But gradually, the pictures will get more complicated, and soon we will be
describing pictures like the one on the entry page of this website. That picture looks
frighteningly complicated, but like all the pictures we will describe, it consists of a few
basic tiles combined according to some rules.

The point of this activity is not that the language of pictures is useful in itself (although
it has important uses in describing the 'pictures’ that go into making integrated circuits),
but that complex pictures are a metaphor for the complex behaviours that are shown by
computer programs. For example, a word processor takes simple actions like printing an
individual letter or digit, and combines them into the immensely complex activity of print-
ing an entire document, with each letter and digit in its right place. A spreadsheet takes
the simple actions of adding or subtracting or multiplying two numbers, and combines
these actions in complex ways to carry out elaborate calculations. The aim of this activity
is to let you understand something of what it is like to write a computer program, why it
is that computer programming is difficult, and (we hope) why computer programming is
a fascinating activity that can be totally absorbing.

To succeed in this activity, you will need to be prepared to think very carefully about
what will happen when you write different expressions in our language of pictures. After a
while, we will reach sentences that are sufficiently complicated that you will not be able to
predict in complete detail what the computer will draw. Part of the point of this activity is
that, although the rules for interpreting sentences in the language are simple and known,
the effect of applying them systematically can be difficult to imagine. Because you will
be using a computer, when we ask you to think about what picture will appear, it will be
very easy just to type in the sentence, press the button and see. That's all very well, but
you will get a lot more out of the activity if you can explain to yourself why the computer
draws the pictures it does.

Computers are very literal creatures, and you will soon discover that, unless you type in
each expression exactly as you see it written on the worksheet, the computer will very
likely complain that it does not understand what you mean, usually by giving a rather
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cryptic ‘error message’. Any little mistake, such as a spelling error or a missing bracket,
will prevent the computer from doing what you want. This is just a fact of life when using
computers; people have tried to make computer programs that can correct small errors,
but (like the spelling checkers that come with word processors) the 'corrections’ are often
even less correct than the original mistakes, so that idea is usually more trouble than it
is worth. At first, it seems humiliating that the computer is always complaining about
‘errors’ in your work, but computer programmers soon become used to just correcting the
mistake and trying again.

Don’t be afraid of trying different expressions to see what the computer will do. The
worst thing that can happen is that the computer will not be able to make sense of what
you type, and you will get another of those ‘error messages’. Or perhaps the computer
will draw a picture that is not quite the one you had in mind; in that case, you should try
to understand why the picture looks as it does, then try again with a different expression.
Just occasionally, the picture that appears will not be the one you wanted, but will be
interesting in an unexpected way: that's one of the delights of working with computer
graphics.



Worksheet 1: Above and Beside

GeomLab uses the constants man and woman to represent stick-figure pictures of a man
and a woman:

man

woman

Whenever an expression and a picture are shown like this, we mean that GeomLab will
show the picture as the value of the expression. You should try to work out why the
expression creates the picture that is shown, and (if you like) check that it does so by
typing the expression into GeomLab.

Two operators that can be used to combine these images are $ and &. As illustrated in
the two examples below, $ means “beside”, and & means “above”:

man $ woman
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man & man

What would woman $ man look like? Sketch the picture in the space below:

woman $ man

Try typing woman $ man into GeomlLab and see if you were right.

Geomlab has a number of other constant pictures, including tree, so typing the expres-
sion (man $ woman) $ tree produces the following image:

(man $ woman) $ tree

What happens when you type man $ (woman $ tree) into GeomlLab? Sketch here the
image that is produced:

man $ (woman $ tree)

You should find that both pictures are the same!

In the first example above, (man $ woman) is worked out (or evaluated) first, producing
a picture of a man standing beside a woman. Then the $ tree part of the expression
puts a tree to the right of this picture.

Similarly, in the second example (woman $ tree) is evaluated first, producing a picture
of a woman and a tree standing next to each other. Then the man $ part of the expression
is evaluated, placing a man to the left of this picture.

We can see that the same picture was produced in the two examples above, so the two
expressions we used are the same (or equivalent). Since it's true for all pictures p, ¢ and
r that

p$q $r=p%$«@$nr
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we say that $ is associative. Since p $ ¢ is not always the same as ¢ $ p, we say that
$ is not commutative.

You can try for yourself in GeomLab similar examples to those above, but replacing $
with &. You should see that & is also associative but not commutative.

Try typing man $ (woman & tree) into Geomlab. You should get an image that looks
like this:

man $ (woman & tree) %i

Something new is happening here. When GeomLab combines two pictures using $, their
sizes are adjusted so that the pictures have the same height, without changing the shape
of either picture.

In man $ woman, they have the same height already, so no adjustment is needed. How-
ever, in man $§ (woman & tree), the picture woman & tree is rather tall and thin, so
it must be reduced in size so that its height is equal to the height of the other man.

You will see that the picture produced above is different from the one given by the

expression (man $ woman) & tree:

(man $ woman) & tree

What happens if you put no brackets in? Try typing man $ woman & tree into GeomLab
and sketch the image that results:

man $ woman & tree

You should see that the expression man $ woman & tree produces the same image as
the expression (man $ woman) & tree. This happens because a $ operation in an
expression is evaluated before an & operation, just as multiplication is evaluated before
addition in an ordinary, mathematical expression. For example, if you were asked to work
out the answer to 3 x 4 + 5, you would first work out 3 x 4 and then add 5 to the
result, giving an answer of 17. We say that x binds more tightly than 4+, and similarly
that $ binds more tightly than &. When GeomLab works out what picture to draw for
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man $§ woman & tree, it evaluates man $ woman first, and evaluates the & tree part
afterwards.

Remember that although $ binds more tightly than &, brackets will still be evaluated

first:
man $ ((man $ tree) & woman) % %

Can you work out what expression gives this picture?

Now look at this picture:

(man $ tree) & (woman $ man) %é
(man & woman) $ (tree & man) %%

Both expressions give the same picture (try it!), so the expressions are equivalent.

If the pictures p, ¢, r and s all have the same shape (as they do here), then the two
expressions

s & (rs$ s
and

p&r)$ (g & s
produce the same picture.

But if the component pictures have different shapes, this is not always true. For example,
applying the rule to ((man & woman) $ man) & (woman $ tree) we get the following
pictures:

((man & woman) $ man) & (woman $ tree) %% ;/\j
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¥
i

We can see that the two pictures are not the same, since some of the figures have been
changed in size (or scaled) differently. If you are good at algebra, you might like to try
to work out exactly when the equation

P & (r$s)=>0Q&r) $ (qg&s)

is true for four pictures p, ¢, r and s. A hint: it has to do with the ratios between the
widths and the heights of the pictures. The scaling rule of GeomLab means that these
ratios do not change when the pictures are scaled up or down; both sides of the equation
will give the same result if the boundaries between the pictures meet in a point.

((man & woman) & woman) $ (man & tree)

In this sheet, we have seen that it makes to work with formulas whose values are not
numbers but pictures. We can have constants that stand for fixed pictures, and we can
have operators that combine pictures to make new ones. Just as in ordinary algebra, it
makes sense to think about the relative priority of the operators: just as convention dic-
tates that multiplication is done before addition where they appear together in a formula,
we can make the convention that $ is done before &.

In ordinary algebra, some equations are true no matter what values we put for the variables
they contain: for example, the equation a + (b + ¢) = (a + b) + c expresses the
fact that addition is associative. Similarly, we can look for equations that always hold
between formulas in our new kind of algebra.

Looking beyond our little world of pictures, there are many places in programming and
computer science where the algebraic idea of having a set of values with operations on
them is relevant. For example, tables of information in databases can be combined with
algebraic operations that match the values in a column of one table with values that appear
in a different column of another table. This is a good way of organising a database system
so that people who use it in their programs are insulated from the way the data is stored.



Worksheet 2: Rotations and reflections

Another two functions that can be used on (or applied to) pictures are rot and flip.
The function rot stands for rotate, and twists a picture anticlockwise by 90 degrees.
The function flip reflects a picture about a vertical axis, so it looks like the picture has
been flipped over:

rot (man) %
flip(man) %
rot(flip(man)) C%ng

Look carefully at the first and third pictures above — they are not the same!

Since rot and flip are functions, they can be applied several times to an argument.
For example, rot(rot(man)) produces the following image:

rot (rot(man))

=<
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Similarly, flip(flip(man)) is allowed, although this will simply produce the original
picture of man. Try it out for yourself in GeomLab. What will rot(rot(rot(tree)))
look like? Sketch the image in the space below:

rot (rot (rot(tree)))

Check your answer in GeomlLab. Since the function rot rotates a picture, it should
be possible to get back to the original picture by using rot several times. Fill in the
expression missing in the space below — you must use the function rot at least once, so
don't just write “tree”!

Check your answer in GeomLab.

So far we've used rot and flip on just constant pictures like man and tree. Now let's
try the expression rot(man & woman) :

rot(man & woman) Cﬂ:g Q@E

Using the picture as a guide, how can this expression be rewritten using only the functions

rot and $7 Fill in the expression below:

Check your answer in GeomLab.

Generally it's true that

rot(p & ¢) = rot(p) $ rot(qg)

Is it also true that
rot(p $ q) = rot(p) & rot(g)?

Try it out on some examples in GeomLab, and see if the images produced are the same.
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If the two expressions are not the same, suggest in the space below an equation that is
true:

We can create a variety of different images using the functions rot and flip on the constant
picture man:

man

rot (man)

rot(flip(man)) g

How many different pictures are there? How many pictures can we create using the
functions rot and flip? Write your answer with an explanation in the space below:

Now try to find expressions that result in these pictures:
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For this last picture, you will need the constant picture star, and it may help you to
make the star be the right size if you know that blank is a square picture that is entirely
blank.

In this sheet, we have added more operations to our algebraic language of pictures, so that
we can now rotate and reflect pictures as well as putting them side-by-side or one above
another. In addition to adding more operations, we have also found new algebraic identities
that relate the operations to each other. Some of these identities make it possible to move
instances of rot and flip inwards in any expression, so that it becomes a combination
(using $ and & of rotated or reflected primitive tiles. This is more-or-less what the
computer does in order to draw the pictures your program creates.

In a wider computer science setting, similar algebraic identities are used internally by
compilers, the programs that translate high-level programs written by human programmers
into the low-level instructions that a machine can follow step by step. The compiler can
use algebra to simplify the low-level program it creates, for example by deleting two
operations if they cancel each other out. This makes the low-level program smaller to
store and faster to obey.



Worksheet 3: Definitions and Functions

Remember that rot can be applied twice to a picture to turn it upside down:

rot (rot(man))

rot (rot (woman))

It would be convenient to make (or define) a function that could be used when we want
two rotations to be applied to an expression, as in the examples above. We can do this
using an expression with define, like this:

define rot2(p) = rot(rot(p))

The expression define sets the expression that follows it on the left hand side of the =
(or equality) sign to be the same as the expression on the right of the equality sign.

When you type this definition in place of an expression, GeomLab responds with the
message

-—— rot2 = <function>

This shows the rot2 has been defined as a function: it is not a picture in itself, but it
produces a picture when we supply an argument (i.e., the picture that is to be rotated).
Now typing rot2(man) into GeomlLab produces the message

-—> <picture>
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and an image appears in the other window, since a picture is produced when rot2 is
applied to an argument picture.

Now that we have defined the function rot2, we can use it in the same way as any other

function:

Note that the variable p used in the expression defining rot2 is a placeholder. This
means that the function rot2 can be applied to any expression put in place of variable
p, such as man or woman.

rot2(man)

rot2(tree)

Let us consider another function definition:
define f(p) =p $ (p & p)

This makes a picture that contains three copies of the argument picture:

f (man)

f (woman)

P00 BOE0

What will the image produced by f(man) $ tree look like? Sketch the picture here:

f(man) $ tree
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Check your answer in GeomLab.

Here is the image produced by f(man $ tree) :

o § exee i
e

This image is different from the one produced by f(man) $ tree. This is because the
brackets in the first example are not around tree, so the function f is applied only to
man , whereas the second example has brackets that include tree, so the function f is
applied to the expression man $ tree.

f(man $ tree) = (man $ tree) $ ((man $ tree) & (man $ tree))
f(man) $ tree = (man $ (man & man)) $ tree

Now look at the picture f(f(man)) :

e
f (f (man))
i

Looking at the picture above, there are nine men produced by applying function £ twice
to man. What happens if we apply function f three times to man, as in £ (f(f(man))) ?
How many men do you think will be in the picture? Write your answer in the space below,
and give a brief explanation:

As described in Worksheet 2, a function takes one or more arguments. For example, the
function £ that we defined earlier takes one argument, which could be man, woman or
any other expression.

Let us define a function g that takes two arguments:
define g(p, @) = (p & @) $ (q & p)

Here is what g(man,woman) looks like:

g(man, woman)
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What will happen if we type g(man,g(man,woman)) into GeomLab? Sketch in the space
below the image that you think will be produced:

g(man, g(man, woman))

Check your answer in GeomLab.

In this sheet, we have seen how to introduce new functions into the GeomLab language
by defining them with a formula that gives their value. This does not increase the variety
of pictures that we can describe, for we can always eliminate the new functions from any
formula by substituting the defining formula of the function in each place it is used. In
essence, this is what the computer does when we ask it to evaluate a formula containing
functions we have defined. Although defining functions does not give us new pictures
in principle, nevertheless in practice it does let us describe complex pictures much more
easily.

In a wider programming context, defining new functions is one of the chief ways program-
mers keep the complexity of computer systems under control. A good function does a
well-defined job, such as solving an equation or displaying a web page, and does it in
such a way that you don't need to understand how the function works in order to use it
— just as you don't need to understand how a CD player works in order to play music on
it. In this way, programmers constantly enrich the vocabulary of their language, making
it possible to give succinct instructions for a wider and wider range of tasks. One of the
hallmarks of an experienced programmer is an ability to simplify programs and make them
easier to understand by introducing appropriate functions.



Worksheet 4: Recurrences and Recursion

Suppose we want to draw rows of men of different lengths. It would be useful to have a
function manrow(n) that, for any value of n, would give a row of n men. How can we
define this function so that it works for any value of n

For example manrow(4) would be a row of 4 men; let's call that picture r4:

define r4 = man $ man $ man $ man %%%%

Similarly, let us call a row of five men r5:

define r5 =
man $ man $ man $ man $ man

What relates r4 and r57 How can we go from a row of four men to a row of five men?
We just need to add another man! So we can say:

r5 = r4 $ man.
Similarly, we can say that r4 = r3 $ man if r3 is a row of three men.

Writing your answers in the same way (i.e. using the same notation), give equations for
r3, and r2 in the space below:

The expression rl refers to a row of just one man, which is the same as the expression
man . Hence we should write the equation

rl = man.
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It would be ideal if we could define a function manrow that can take a number as an
argument, and produce a row of men that is as long as that number. The way to do this
is tricky to understand, so look at the definition below, and then read the explanation
that follows it:

define manrow(n) = manrow(n-1) $ man when n > 1
| manrow(1l) = man

This definition of the function manrow consists of two equations, separated by a vertical
bar character | . The first equation is used then n > 1, and states in general form our
observations that r4 = r3 $ man, and r3 = r2 $ man, and so on. The other equation
is simpler, and just restates the fact that r1 = 1 in terms of the function manrow.

You should enter this definition into GeomLab. The symbol | is entered by holding down
the Shift key and pressing the \ key. To split the definition onto two lines, just press
the Return key. Then, as usual, press Shift-Return to make GeomLab evaluate the
whole definitiona as one unit.

At first sight, this equation appears to be defining the function manrow in terms of
itself, and because of this, we call it a recursive definition. Despite the self-reference,
the definition works because it shows us how to calculate, say, manrow(5) assuming we
already know how to calculate manrow(4), and applying the equation repeatedly can
bring us down to the base case manrow(1) = man.

If you type an expression like manrow(5), then GeomLab expands the definition like this:

manrow(5) = manrow(4) $ man
= manrow(3) $ man $ man
= manrow(2) $ man $ man $ man
= manrow(1) $ man $ man $ man $ man
=man $ man $ man $ man $ man.

The result is the image we expected:

What does manrow(4) & manrow(3) & manrow(2) look like? Sketch the picture in
here:

manrow(4) & manrow(3) & manrow(2)

This picture looks a bit like a crowd, so let's try to define a function that can create
crowds of different sizes.

To get a realistic-looking crowd, we will need to have rows that get larger in the number of
men (and smaller in height) as we travel from bottom to top of the picture. The function
crowd(m, n) can be defined so that m is the length of the bottom row in the picture,
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and n is the length of the top row. To save ourselves work, we can use the previously
defined function manrow to draw the rows that we want.

If m and n are the same, then the crowd will consist of just one row:
crowd(m, m) = manrow(m)

Otherwise, we are considering an expression of the form crowd(m, n), where m < n.
This crowd consists of a top row containing n men, and below it a smaller crowd with
rows ranging from m to n-1 men:

crowd(m, n) = manrow(n) & crowd(m, n-1)

We can put these two equations together to make a recursive definition of the function
crowd:

define crowd(m, n) = manrow(n) & crowd(m, n-1) when m < n
| crowd(m, m) = manrow(m)

Here are two example images produced using our crowd function:

crowd(3, 5) %

crowd(6, 12)

Try it!

This sheet has introduced an important new idea: that we can take a recurrence relation
that describes a sequence of pictures, and turn it into the definition of a recursive function
that generates pictures in the sequence. Simple recursive definitions have two parts: a
rule that generates an element of the sequence from the previous element, and a starting
rule that defines the first element. The idea of defining functions recursively is important,
because it opens the possibility that a finite program can generate an infinite variety of
behaviour by varying the argument that is passed to the function.

With a non-recursive function, each time the function is referred to, the formula that is
the body of the function is used just once. With a recursive function, substituting the
body of the function for a use of it may leave a formula that still contains a use of the
function, so the definition may be used many times in computing the value of the function.
In a wider setting, it is recursion that lets us use functions to model, understand, and
compute with complex processes.



Worksheet 5: Zig-zags and Spirals

This worksheet uses two constants straight and bend that look like square tiles:

bend

Let's introduce some short names for rotated versions of these basic shapes:

define s = straight
define sl1 = rot(s)
define b = bend
define bl = rot(b)
define b2 = rot(bl)
define b3 = rot(b2)

We can now draw various shapes by putting together the tiles that we have just defined:

Il
o

define spil

define spi2 = (b $ s) & (bl $ b2)
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define spi3d =
(b$s$s) & (s1$b3b3) & (b1 $s $ b2

The picture for spi4 is shown below on the right. Define spi4 yourself in the space
provided, then use GeomLab to test your expression, and see if you are right:

define spi4d = ‘ i i i

How can we draw more spirals with more and more turns without typing more and more
complicated expressions? The answer is to write a program to do it.

We can start by working out how to draw one arm of a spiral. This is a number of
straight's, with a bend at the end. As we did with the rows of men in Worksheet 4,
let's begin by drawing the first few sides one at a time, and then look for a pattern:

define al = bend
define a2 = bend $ straight F
define a3 = bend $ straight $ straight F

From the examples above, we can see that we start with a bend and add straight's
one at a time. We can express this process using a recursive function, as described in
Worksheet 4:

define arm(n) = arm(n-1) $ straight when n > 1
| arm(1) = bend

The new function arm can now be used to draw sides of desired length:

arm(3) F
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arm(4) _

Let's now try to use our function arm to create some spirals. How can we get from spi2
(defined earlier) to spi3, and from there to the next spiral, and so on? We can see that
spil is a 2 x 2 arrangement of tiles, and the same tiles appear as one corner of spi3,
after being rotated by 180°. The rest of spi3 consists of a rotated copy of arm(2) and
a copy of arm(3), as shown in the image below:

F
arm(3) & (rot(arm(2)) $ rot2(spi2)) Lﬂ

(I've separated the parts of the picture a bit, so that you can see how it fits together).
The resulting image looks exactly like spi3. This process can be repeated using spi3
to produce spi4, as shown below:

—

arm(4) & (rot(arm(3)) $ rot2(spi3)) ! E |

We can see that this process can be applied to any spiral, so it must be possible to use
it in a recursive function that draws spirals of any size. Since we have defined spil as
simply bend, we can use this as a base case for the following recursive definition:

define spiral(n) = 7?7?77 when n > 1
| spiral(1l) = bend

Fill in the missing expression in the definition above. Check your answer in GeomLab (type
in the completed definition, and try a few examples to see whether the correct picture is
produced).

With the completed definition, we can draw spirals with as many turns as we like:

spiral(5)

spiral(10) L
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(Note: When a complex spiral is drawn, the turns will get very small, and you'll start to
see them merge together in a way that may look a bit uneven on the computer screen.
Don't worry, this is normall)

Now here is a challenge for you: define a function zigzag that can draw zig-zags like
these:

zigzag(4,3)

zigzag(10,5)

The picture zigzag(m,n) should be m units wide and n units high.

Also, define a function zagzig that can draw shapes like these:

zagzig(b)

zagzig(10)

In this sheet, we have seen more examples of recursive functions that generate a sequence
of patterns, each a little more complex than the one before. Each time, the key to finding
the proper definition of the function is to work out exactly how a copy of each member
of the sequence is embedded in the next member.



Worksheet 6: Escher pictures

Let's see how to draw the Escher picture “Square Limit" that is on the front cover of this
workbook. The fascinating thing about this picture is that the fish get smaller and smaller
as they get closer the the edge of the picture, making it possible in principle to draw an
infinite number of fish in a finite space. Instead of drawing this infinitely complex picture,
we will instead define a function that can produce any finite portion of it. At first, we'll
aim at making a black-and-white version of the picture.

The picture is made from four square tiles: A, B, C and D:
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These tiles fit together to make a larger tile that we'll call T:

define T = (A $ B) & (C $ D)

It's also possible to fit together four rotated copies of tile A to make another tile that
we'll call U:

define U = (A $ rot3(A)) & (rot(A) $ rot2(A))

As you can see, tile U forms the centre of the Escher picture.

The remarkable thing about tile T is that it fits next to a smaller copy of itself, as is
shown here:

(T & blank) $ T

In this picture, the blank square forces the copy of T shown on the left to be half the size
of the one on the right, but the tiles still fit together nicely.

It's also possible to fit a small, rotated copy of T next to T, like this:

(blank & rot(T)) $ T

In fact, all three copies of T can be fitted together at once:

define p = (T & rot(T)) $ T

define q = (T & rot(T)) $ rot(T)
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And the pictures p and q fit together vertically:

It's a remarkable aspect of Escher’s genius that he was able to design a tile that works
like this.

Now is a good time to introduce a trick that allows us to get colour pictures. GeomlLab
has been set up so that it can colour in any picture made up from the tiles A, B, C and
D, choosing the colour of each fish according to the direction it is pointing. Try typing
> 1 WPTY

colour(p & q)

to see the previous picture coloured in this way. This picture looks similar to the part of
the Escher picture that is close to the left-hand edge. This trick can be played with any
of the pictures that are made up of tiles A, B, C and D — and the colours help to make
it obvious when the tiles don't fit together properly.

In fact, we can define a sequence of more and more elaborate edge pieces like this: first,
sidel is simply two copies of T, one of them rotated:

define sidel = T & rot(T)

Then side2 is obtained by joining two copies of sidel and two copies of T, again with
one rotated:

define side2 = (sidel $ T) & (sidel $ rot(T))




26  Worksheet 6: Escher pictures

This is the same as the picture p & q we made earlier. The next picture in the sequence,
side3, is obtained in a similar way from side2:

define side3 = (side2 $ T) & (side2 $ rot(T))

To start putting together the Escher picture from these pieces, we can use a function
called frame, defined as follows:

define frame(c, s, p) =
(c $ rot3(s) $ rot3(c))
& (s $ p $ rot2(s))
& (rot(c) $ rot(s) $ rot2(c))

(To save you from typing it out, I've included this definition as part of GeomLab itself).
The idea is that frame(c, s, p) is a picture that has the picture p in the middle,
rotated copies of the picture s at the sides, and rotated copies of the picture ¢ in the
corners. For example, we could frame the picture U with copies of man and star:

YOEO X

bb\LVV
frame(star, man, U) %
A _—=gY

R =L

For frame to work well, the pictures ¢ and p should be square, but s can be rectangular.

We can use frame to put together Escher pictures like this, leaving the corners blank for
now:

frame(blank, sidel, U)

frame(blank, side2, U)

frame(blank, side3, U)
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So all that remains is to work out what would fill in the gaps at the corners. For the first
picture, copies of U will do:

frame (U, sidel, U)

To fit with side2 or side3, something more complicated is needed. If we define

define cornerl = U
define corner?2 = (cornerl $ rot3(sidel)) & (sidel $ U)
define corner3 = (corner2 $ rot3(side2)) & (side2 $ U)

then these fit perfectly to make the next pictures in Escher's sequence:

define 1imit2 = frame(corner2, side2, U)

define 1imit3 = frame(corner3, side3, U)

You can make colour versions of any of these pictures by typing (for example)
colour(limit3).

Now two problems for you: first, to define recursive functions called side(n) and
corner(n) so that the function 1imit(n) , defined by

define limit(n) = frame(corner(n), side(n), U)
can generate the Escher picture to any desired degree of complexity.

Second: work out how to draw the picture that is shown on the back cover of this
workbook, in which the fish get smaller towards the centre. To do so, you will need two
more tiles, E and F:

=
NV
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&

2

Copies of these two tiles fit together to make a pair of fish chasing each other’s tails:

define V = (E $ F) & (rot2(F) $ rot2(E)) \\

These fish appear along the diagonals of the picture. You should aim to define an ‘in-
verse limit' function invlimit(n) that can be used to produce any desired degree of
approximation to the picture, replacing the center part with blank.
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Hilbert curve

By now, | hope you will relish the challenge of working out how to draw pictures without
much help from me. If so, here are two families of pictures that are made up from square
tiles.

The first family was discovered by the German mathematician David Hilbert (1862-1943),
and can be made with the bend and straight tiles that we used earlier:

bend

The first curve in the family (let's call it hilbert(1) ) consists of four copies of bend,
rotated and joined together:

hilbert (1)
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The next curve is a little more complicated:

hilbert (2)

With the third curve in the sequence, a pattern starts to emerge:

hilbert (3)

It looks as if this curve is made up of four copies of hilbert(2) rotated and joined
in the right way. But if you look closely, you will see that in each copy of the curve,
one of the ends has been bent so as to make it join with the next part of the curve,
so that hilbert(3) actually consists of four copies of different picture — let's call it
hilbend(2) :

hilbend(2)

To draw the Hilbert curves properly, you will need to define two recursive functions
that depend on each other. You can begin to work out their definitions by asking what
hilbend (1) would need to look like if it had the same relationship with hilbert (2)
that hilbend(2) has with hilbert(3) .

What should hilbend(3) look like, and can it be made from copies of hilbert(2) and
hilbend(2) put together in an appropriate way?

Does the sequence have to start with hilbert (1) ? Is there an appropriate definition of
hilbert(0) that fits the pattern?

These hints should be enough for you to define the two functions for yourself. When you
have done so, what happens if you evaluate hilbert(10) ? Does this justify the term
space-filling curve that is used to describe the behaviour of curves in this family?
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Sierpinski curve

Another family of space-filling curves was discovered by the Polish mathematician Waclaw
Sierpinski (1882-1969). This can be drawn using two new tiles that we shall call nub
and link:

nub

link

We can make the first curve in the family using four copies of nub:

sierp(1)

3 <

The next member of the family is almost but not quite four copies of this picture joined
together:

sierp(2) E E

The third member is similarly obtained from four pictures that are not quite the same as
sierp(2):

o %%

Can you write a recursive definition of the function sierp, perhaps by defining it together
with another function, so that they are mutually dependant?

These two families of curves are called space-filling because (in a precise sense) the curves
come close to every point in the square that encloses them. By using some results about
continuous functions that are proved in university-level maths, it is possible to use these
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curves to show a seeming paradox, that there is a continuous function that maps the unit
interval to the whole of the unit square.

From a programming point of view, the interesting thing is that — like the Escher picture
— these curves are made up of several pieces, each similar to the curve itself.
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This worksheet introduces a different way of drawing pictures that will allow us to escape
from the world where every non-trivial picture consists of two other pictures but either
one beside the other or one above the other. Instead of joining together tiles, we will give
instructions to an imaginary robot called a turtle, telling it whether to turn to the right or
left, or go straight on. We will write programs that produce the instructions for the robot
as a list y, then use a function turtle(y) that is provided by GeomLab: this function
takes the list of instructions and produces a picture of the track that the robot follows.

The turtle obeys a number of different commands, and among them are ahead(x), an
instruction to move ahead by x units; 1left(a) , an instruction to turn to the left through
an angle of a degrees, and right(a), a similar instruction to turn to the right. When
the robot turns, it moves along the arc of a circle that has diameter 1 unit.

The turtle function takes instructions and produces a picture. Its input is not just a
single instruction, but a /ist of instructions that are followed one after another. Lists in the
GeomLab language are written with square brackets, so that [left(180), right(90),
ahead(1)] is a list of instructions, and supplying it to the turtle function gives the
corresponding picture:

turtle([left(180), right(90), ahead(1)])

The turtle that follows the list of commands always starts pointing to the right; the
starting position is in the middle of the bottom of the picture here. The commands say
to turn to the left through a half-circle, then to the right through 90 degrees, then to go
straight ahead for 1 unit, and the picture is what results from following these instructions.

GeomLab follows the motion of the turtle as it draws the picture, and makes the picture
as large as will fit in the window. Depending on how the turtle moves, the starting and
ending positions can be anywhere within the window or at its edge.
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GeomLab provides a number of operations that act on lists. If xs and ys are lists, then
xs @ ys is a list that contains all the elements of xs, followed by all the elements of
ys. Here's an example that uses lists of numbers instead of lists of commands:

> [1, 2, 3] @ [4, 5]
--> [1, 2, 3, 4, 5]

Another operation that is provided is reverse, which gives a list that contains the same
elements as its argument, but in reverse order:

> reverse([1, 2, 3])
--> [3, 2, 1]

If xs is a list of commands, then opposite(xs) is a list that is modified so that each
command left(a) is replaced by right(a), and vice versa:

> opposite([left(90), right(90), left(180), ahead(1)])
-=> [right(90), left(90), right(180), ahead(1)]

Here is an example that shows the effect of reversing a list of commands:

turtle(reverse([left(180), right(90), ahead(1)])) ﬂ/

As you can see, the picture us different from the previous one. The function opposite
gives a picture that is different again:

turtle(opposite([left(180), right(90), ahead(1)]))

We can use turtle to replicate the Hilbert curves that we drew in Worksheet 7, but
describing them now in terms of the turns to left and right that the turtle must make as it
follows the curve. The best way to do this is to define a function hilb(n) that produces
the list of commands that must be obeyed in drawing the n'th curve in the sequence.
Here are the first three curves, drawn in this way:

turtle(hilb(1)) /\

turtle(hilb(2))
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turtle(hilb(3))

GeomLab draws these curves with smooth turns rather than sharp bends, giving a different
effect from the tiled pictures we drew earlier.

To reproduce these results yourself, you will need to define the function hilb that gen-
erates the list of commands. For example,

hilb(2) = [ahead(1l), left(90), left(90), right(90), ahead(1l),
right(90), right(90), left(90), left(90), right(90),
right(90), ahead(1), right(90), left(90), left(90), ahead(1)]

Each of the curves starts in the bottom left-hand corner of the picture, because the turtle
can then start off pointing to the right.

The first six dragon curves look like this:

turtle(dragon(1)) J

turtle(dragon(2))

turtle(dragon(3))

turtle(dragon(4)) ﬁ/\S

turtle(dragon(5))
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turtle(dragon(6))

Each successive curve consists of two copies of the preceding curve with a left turn between
them; but the second copy is reversed, so that the turtle traces it from what was the end
to what was the beginning.

An entertaining way of generating the dragon curve by hand is as follows: take a narrow
strip of paper and lay it horizontally in front of you. Take the left-hand end of the strip
and lay it over the right-hand end, thus folding the strip in half. Repeat this, taking the
crease that is now at the left-hand end and placing it over the right-hand end, folding the
strip in half again. Do this several times more, then open out the strip and make each
crease into a right-angle. The edge of the strip will then form a dragon curve.

A different, but related curve can be formed if, instead of performing all the folds from
left to right, you alternate between folding the left end over the right and folding the right
end over the left. Can you draw this curve with GeomLab?






	Introduction
	Worksheet 1: Above and Beside
	Worksheet 2: Rotations and reflections
	Worksheet 3: Definitions and Functions
	Worksheet 4: Recurrences and Recursion
	Worksheet 5: Zig-zags and Spirals
	Worksheet 6: Escher pictures
	Worksheet 7: Space-filling curves
	Hilbert curve
	Sierpinski curve

	Worksheet 8: Turtle graphics

