(1)
v1 v2 =( x1 i+ y1 j+ z1 k)( x2 i+ y2 j+ z2 k) =-( x2 + y2 + z2 )+( y1 z2 - z1 y2 )i+( z1 x2 - x1 z2 )j+( x1 y2 - y1 x2 )k =-( v1 · v2 )+( v1 × v2 ).

Thus the product of pure quaternions combines the scalar product and the vector product of the equivalent vectors.

(2) For any quaternion v=xi+yj+zk where |v|=( x2 + y2 + z2 )=1 we have
v2 =-( v1 · v1 )+( v1 × v1 ) =-( x2 + y2 + z2 )+0 =-1 .

For all values of θ and ϕ there are quaternions v=cosθcosϕi+cosθsinϕj+sinθk and by elementary trig:
cos2 θ cos2 ϕ+ sin2 θ cos2 ϕ+ sin2 ϕ =( cos2 θ+ sin2 θ) cos2 ϕ+ sin2 ϕ = cos2 ϕ+ sin2 ϕ =1

so there are infinitely many quaternions whose square is -1.

(3) (i)As u0 is a point on the plane, by the rules of quaternion multiplication:

u0 n=- u0 ·n+ u0 ×n= u0 ×n

n u0 =-n· u0 +n× u0 =n× u0 .

Hence u0 n=-n u0 so F( u0 )=n u0 n=n(-n u0 )=- n2 u0 = u0 .

(ii) Here we shall use n2 =-1:
F( u0 +tn)=F( u0 )+tF(n)= u0 +tnnn= u0 -tn.