(1) (a)
q q-1 =( 1 2 + 1 2 i)( 1 2 - 1 2 i) = 1 2 (1- i2 )=1 .

(b) qx=( 1 2 + 1 2 i)ti=xq

(c)
F(j)=qj q-1 =( 1 2 + 1 2 i)(j)( 1 2 - 1 2 i) = 1 2 (1+i)(j)((1-i) = 1 2 (j+k)(1-i)= 1 2 (j+k+k-j) =k .

Similarly Fk=-j. F is a rotation of 90 degrees about the x axis.

(2)
qv q-1 =(cosθ+sinθk)(rcosϕi+sinϕj)(cosθ-sinθk) =r((cosθcosϕ-sinθsinϕ)i+(cosθsinϕ+sinθcosϕ)j)(cosθi-sinθk) =r(cos(θ+ϕ)i+sin(θ+ϕ)j)(cosθi-sinθk) =r((cos(θ+ϕ)cosθ-sin(θ+ϕ)sinϕ)i+(cos(θ+ϕ)sinθ+sin(θ+ϕ)cosϕ)j) =r(cos(2θ+ϕ)i+sin(2θ+ϕ)j) .