Arithmetic for the set R* is isomorphic to the arithmetic of real
numbers R where the matrix
æ ç
è
x
0
0
x
ö ÷
ø
corresponds to
the real number x - both sets are closed under addition and
multiplication which are commutative - addition and
multiplication are associative - the additive identity is
æ ç
è
0
0
0
0
ö ÷
ø
corresponds to the real number zero-
the multiplicative identity
æ ç
è
1
0
0
1
ö ÷
ø
corresponds
to the real number 1- each element has an additive and
multiplicative inverse - the distributive property holds.
Arithmetic for the set C* is isomorphic to the arithmetic of
complex numbers C where the matrix
æ ç
è
x
-y
y
x
ö ÷
ø
corresponds to the complex number x+iy - both sets are
closed under addition and multiplication which are commutative
- addition and multiplication are associative
- the additive identity is
æ ç
è
0
0
0
0
ö ÷
ø
corresponds to the complex
number 0+i0
- the multiplicative identity
æ ç
è
1
0
0
1
ö ÷
ø
corresponds to the complex number 1+i0
- the additive inverse of
æ ç
è
x
-y
y
x
ö ÷
ø
~ x + iy
is
æ ç
è
-x
y
-y
-x
ö ÷
ø
~ -x - iy
- the multiplicative inverse of
æ ç
è
x
-y
y
x
ö ÷
ø
~ x + iy
is
1(x2+y2)
æ ç
è
x
y
-y
x
ö ÷
ø
~
x - iyx2+y2
- the distributive property holds.
(2)(a)
i2=j2=k2=
æ ç
è
-1
0
0
-1
ö ÷
ø
(b) ij=k=-ji, (c) jk=i=-kj (d) ki=j=-ik
(3) ij=k, ijk=k2=-1, ijki=-i, ijkij=-ij=-k, ijkijk=-k2=1 so the sequence
i, ij, ijk, ijki, ijkij, ...
is a cycle of order 6 repeating the terms
i, k, -1, -i, -k, 1