so An+1 and An have the same
parity which means that all the Ai are odd. The values of B
are alternately odd and even, odd when n is odd
and even when n is even, that is B2i is even and B2i+1
is odd.
Method 2: By the Binomial Theorem
(1 + Ö2)n = 1 + nÖ2 +
æ ç
è
n
2
ö ÷
ø
(Ö2)2 +
æ ç
è
n
3
ö ÷
ø
Ö23 + ....
All the Binomial coefficients are integers and so all the
coefficients from the
æ ç
è
n
2
ö ÷
ø
(Ö2)2
onwards are even. It
follows that all the terms independent of Ö2 have odd
coefficients. The coefficients of Ö2 are odd when n is odd
and even when n is even.
Generalisation:
(1 + Öp)n = 1 + nÖp +
æ ç
è
n
2
ö ÷
ø
(Öp)2 +
æ ç
è
n
3
ö ÷
ø
Öp3 + ....
so writing
(1 + Öp)n = An + Bn Öp
it follows that
An º 1 (mod p) and always odd and Bn º n (mod
p) so it is odd or even according to whether n is odd or even
mod p.