If
æ
ç
è
5
4
ö
÷
ø
m

 
» æ
ç
è
2
1
ö
÷
ø
n

 
then
mlog 5
4
» n log2
and we shall find
m
n
» log2
log5/4
.
Using Euclid's algorithm the result can be represented as a continued fraction.
log2
log5/4
= 3 + Q
log5/4
where
0 < Q
log5/4
< 1

. So
log2
log5/4
= 3 + 1
log 5/4
Q
= 3 + 1
9.4087788
= 3 + 1
9 + 1
2.4463109
giving the first approximation
28
9

. Repeating the algorithm:
log2
log5/4
= 3 + 1
9 + 1
2 + 1
2 + 1
4 +...
Truncating this continued fraction gives the successive approximations
59
19

,
146
47

and
643
207

.