The general case:


1m + 2m ++ nm = ( 1m et + 2m e2t + nm ent )|t=0 = dm dtm (1+ et + e2t ++ ent )|t=0 = dm+1 dtm+1 t( e(n+1)t -1) et -1 |t=0 = 1 m+1 ( dm+1 dtm+1 te(n+1)t et -1 |t=0 - dm+1 dtm+1 t et -1 |t=0 ) = 1 m+1 ( dm+1 dtm+1 k=0 Bk (n+1) tk k! |t=0 - dm+1 dtm+1 k=0 Bk tk k! |t=0 ) = Bm+1 (n+1)- Bm+1 m+1

Where Bn (x) is the Bernoulli polynomial and B_n are the Bernoulli numbers

Conclude that
1m + 2m ++ nm = Bm+1 (n+1)- Bm+1 m+1

Amongst other things, all you have to do now is find out what on earth is a Bernoulli polynomial!!