The general case:


1m +2m + ... + nm
= (1met + 2me2t + ... nment)|t=0
= dm
dtm
(1 +et + e2t + ... + ent) ê
ê
ê


t=0 
= dm+1
dtm+1
t(e(n+1)t - 1)
et-1
ê
ê
ê


t=0 
= 1
m+1
æ
ç
è
dm+1
dtm+1
te(n+1)t
et-1
ê
ê
ê


t=0 
- dm+1
dtm+1
t
et-1
ê
ê
ê


t=0 
ö
÷
ø
= 1
m+1
æ
ç
è
dm+1
dtm+1
¥
å
k=0 
Bk(n+1) tk
k!
ê
ê
ê


t=0 
- dm+1
dtm+1
¥
å
k=0 
Bk tk
k!
ê
ê
ê


t=0 
ö
÷
ø
= Bm+1(n+1) - Bm+1
m+1
Where Bn(x) is the Bernoulli polynomial and B_n are the Bernoulli numbers

Conclude that
1m + 2m + ... + nm = Bm+1(n+1) - Bm+1
m+1
Amongst other things, all you have to do now is find out what on earth is a Bernoulli polynomial!!