Shaun from Nottingham High School sent this solution.



(i)     By calculation, we have
P = æ
ç
è
ta+b+1
a+b+1
ö
÷
ø
2

 
= t2(a+b+1)
(a+b+1)2
,
and
Q = æ
ç
è
t2a+1
2a+1
ö
÷
ø
æ
ç
è
t2b+1
2b+1
ö
÷
ø
= t2(a+b+1)
(2a+1)(2b+1)
.
Thus we must decide which of the two expressions
(a+b+1)2,        (2a+1)(2b+1)
is the smaller. Since
(a+b+1)2-(2a+1)(2b+1) = (a-b)2 ³ 0
we see that P £ Q.
(ii)     Given the inequality
ó
õ
t

0 
[f(x)+lg(x)]2 dx ³ 0,
we have
l2 ó
õ
t

0 
g2(x)dx+2l ó
õ
t

0 
g(x)f(x)dx + ó
õ
t

0 
f2(x)dx ³ 0
The discriminant of this quadratic in l must be less than or equal to 0 since the quadratic is never negative:
4[ ó
õ
t

0 
g(x)f(x)dx]2-4 ó
õ
t

0 
g2(x)dx ó
õ
t

0 
f2(x)dx £ 0.
This gives the required inequality which is known as the Cauchy Schwarz inequality:
æ
è
ó
õ
t

0 
f(x)g(xdx ö
ø
2
 
£ æ
è
ó
õ
t

0 
f(x)2 dx ö
ø
æ
è
ó
õ
t

0 
g(x)2 dx ö
ø
.