i)     By calculation, we have
P = æ
ç
è
ta+b+1
a+b+1
ö
÷
ø
2

 
= t2(a+b+1)
(a+b+1)2
,
and
Q = æ
ç
è
t2a+1
2a+1
ö
÷
ø
æ
ç
è
t2b+1
2b+1
ö
÷
ø
= t2(a+b+1)
(2a+1)(2b+1)
.
Thus we must decide which of the two expressions
(a+b+1)2,        (2a+1)(2b+1)
is the smallest.

Since
(a+b+1)2-(2a+1)(2b+1) = (a-b)2 ³ 0
we see that P £ Q.
(ii)     By computing [f(x)+lg(x)]2 and integrating, we have
U + 2Vl+ Wl2 ³ 0,
(*)
for all l, where
U = ó
õ
t

0 
[f(x)]2 dx,    V = ó
õ
t

0 
f(x)g(xdx,    W = ó
õ
t

0 
[g(x)]2 dx.
The condition that (*) holds for all l is UW ³ V2 which is the required inequality.