(i)     Here we have
{ 0f(x)x ifx>0; 0f(x)x ifx<0.

Thus
0 0 1 f(x)dx 0 1 xdx= 1 2 ,

and
0 -1 0 f(x)dx -1 0 xdx= -1 2 ,

so the inequality follows. In general, if n is odd, say n=2m+1, we have
{ 0f(x) x2m+1 ifx>0; 0f(x) x2m+1 ifx<0.

Thus
0 0 1 f(x)dx 0 1 x2m+1 dx= 1 2m+2 ,

and
0 -1 0 f(x)dx -1 0 x2m+1 dx= -1 2m+2 ,

so that
- 1 2m+2 -1 1 f(x)dx 1 2m+2 .

(ii)     Here we have 0f(x) x2 for all x, so that
0= -1 1 0dx -1 1 f(x)dx -1 1 x2 dx= 2 3 .

In general if n is even, say n=2m, we have 0f(x) x2m , so that
0= -1 1 0dx -1 1 f(x)dx -1 1 x2m dx= 2 2m+1 .