(i)     Here we have
ì
í
î
0 £ f(x) £ x
if x > 0;
0 ³ f(x) ³ x
if x < 0.
Thus
0 £ ó
õ
1

0 
f(xdx £ ó
õ
1

0 
x dx = 1
2
,
and
0 ³ ó
õ
0

-1 
f(xdx ³ ó
õ
0

-1 
x dx = -1
2
,
so the inequality follows. In general, if n is odd, say n=2m+1, we have
ì
í
î
0 £ f(x) £ x2m+1
if x > 0;
0 ³ f(x) ³ x2m+1
if x < 0.
Thus
0 £ ó
õ
1

0 
f(xdx £ ó
õ
1

0 
x2m+1 dx = 1
2m+2
,
and
0 ³ ó
õ
0

-1 
f(xdx ³ ó
õ
0

-1 
x2m+1 dx = -1
2m+2
,
so that
- 1
2m+2
£ ó
õ
1

-1 
f(xdx £ 1
2m+2
.
(ii)     Here we have 0 £ f(x) £ x2 for all x, so that
0 = ó
õ
1

-1 
0  dx £ ó
õ
1

-1 
f(xdx £ ó
õ
1

-1 
x2 dx = 2
3
.
In general if n is even, say n=2m, we have 0 £ f(x) £ x2m, so that
0 = ó
õ
1

-1 
0  dx £ ó
õ
1

-1 
f(xdx £ ó
õ
1

-1 
x2m dx = 2
2m+1
.