α(z)=- z ¯
β(z)=2- z ¯
γ(z)= z ¯

γβα(z) = γβ(- z ¯ ) = γ(2- (- z ¯ ) ¯ ) = γ(2+z) = 2+ z ¯

Hence this combination of 3 reflections increases the x coordinates of each point in the shape by 2 units thus translating it 2 units forward while mapping each y coordinate to -y thus reflecting the shape in the real axis, so producing a glide reflection.