 |
The
diagram shows the solution for 3
lines but the same principle
applies to any regular polygon.
For an n-gon the angle marked at
the centre of the circle C will be
. As n gets larger
the polygons will get smaller and
the lines will 'radiate' out more
like the spokes of a wheel.
|
For 3 lines, the area of each part must be
. Hence
|
|
p 4
|
= |
3 2
|
r2 sin |
2p 3
|
= |
3Ö3 4
|
r2. |
|
So
Let the polygon have sides of length x and the length of the line
segments be L, then
Using Pythagoras Theorem
In general
|
rn2 = |
2p n(n+1)
|
. |
1 sin(2p/n)
|
. |
|
As
as a ® ¥ we see that
and
where Ln ® 1 as n® ¥.
Here is an Octave program to do
these calculations:
# divide disc into n+1 equal parts with n equal segments
# function y=s(n) y=sin(2*pi/n); endfunction
function y=t(n) y=tan(2*pi/n); endfunction
# function y=r(n) y=sqrt((2*pi)/(n*(n+1)*s(n)));
endfunction
# function y=x(n) y=2*r(n)*sin(pi/n); endfunction
# function y=L(n)
z=pi*cot(pi/n);w=n*(n+1);
y=sin(pi/n)*r(n) + sqrt(1-(z/w));
endfunction
# disp(" ") disp("This gives [n,1/sqrt(n),r(n),x(n),L(n)]")
disp(" ")
for n=(3:36) u=[n,1/sqrt(n),r(n),x(n),L(n)];disp(u) endfor
Here are the results for n = 3 to
36:
| n |
1/sqrt(n) |
r(n) |
x(n) |
L(n) |
| 3 |
0.57735 |
0.77756 |
1.34677 |
1.59472 |
| 4 |
0.50000 |
0.56050 |
0.79267 |
1.31444 |
| 5 |
0.44721 |
0.46927 |
0.55166 |
1.20096 |
| 6 |
0.40825 |
0.41562 |
0.41562 |
1.14079 |
| 7 |
0.37796 |
0.37883 |
0.32873 |
1.10432 |
| 8 |
0.35355 |
0.35130 |
0.26888 |
1.08030 |
| 9 |
0.33333 |
0.32956 |
0.22543 |
1.06356 |
| 10 |
0.31623 |
0.31173 |
0.19266 |
1.05137 |
| 11 |
0.30151 |
0.29672 |
0.16719 |
1.04221 |
| 12 |
0.28868 |
0.28382 |
0.14692 |
1.03515 |
| 13 |
0.27735 |
0.27256 |
0.13045 |
1.02958 |
| 14 |
0.26726 |
0.26260 |
0.11687 |
1.02511 |
| 15 |
0.25820
|
0.25370 |
0.10550 |
1.02147 |
| 16 |
0.250000 |
0.245689 |
0.095863 |
1.018465 |
| 17 |
0.242536 |
0.238413 |
0.087617 |
1.015960 |
| 18 |
0.235702 |
0.231767 |
0.080492 |
1.013849 |
| 19 |
0.229416 |
0.225661 |
0.074285 |
1.012056 |
| 20 |
0.223607 |
0.220026 |
0.068839 |
1.010521 |
| 21 |
0.218218 |
0.214802 |
0.064029 |
1.009197 |
| 22 |
0.213201 |
0.209940 |
0.059755 |
1.008048 |
| 23 |
0.208514 |
0.205401 |
0.055937 |
1.007046 |
| 24 |
0.204124 |
0.201148 |
0.052510 |
1.006168 |
| 25 |
0.200000 |
0.197153 |
0.049420 |
1.005394 |
| 26 |
0.196116 |
0.193391 |
0.046621 |
1.004709 |
| 27 |
0.192450 |
0.189839 |
0.044078 |
1.004102 |
| 28 |
0.188982 |
0.186478 |
0.041758 |
1.003560 |
| 29 |
0.185695 |
0.183291 |
0.039634 |
1.003076 |
| 30 |
0.182574 |
0.180264 |
0.037685 |
1.002641 |
| 31 |
0.179605 |
0.177384 |
0.035891 |
1.002251 |
| 32 |
0.176777 |
0.174639 |
0.034235 |
1.001899 |
| 33 |
0.174078 |
0.172018 |
0.032703 |
1.001581 |
| 34 |
0.171499 |
0.169513 |
0.031281 |
1.001293 |
| 35 |
0.169031 |
0.167115 |
0.029960 |
1.001031 |
| 36 |
0.166667 |
0.164817 |
0.028730 |
1.000793 |