Start with two numbers, say 8 and 2.
Let's generate a sequence where the next number is the mean of the previous two numbers.

So the next number is half of $(8+2)$, and the sequence continues: $8,2,5$
The next number is half of $(2+5)$, and the sequence continues: $8,2,5,3.5$
What would happen if you continued this process indefinitely?

Choose a few pairs of starting numbers and repeat the process.
Each time, your sequence should get closer and closer to a value which we call the limit.

Can you find a relationship between your starting numbers and the limit of the sequence they generate?

Can you explain why this happens?

Now start with three numbers.

This time, we can generate a sequence where the next number is the mean of the last three numbers.

Check you agree that if we start with $4,1,10$, the next number is 5 , and the number after that is $\frac{16}{3}$.

What would happen if you continued this process indefinitely?

Choose some more sets of three starting numbers.
Can you find a relationship between your starting numbers and the limit of the sequence they generate?

Can you explain why this happens?

Extension

Explore what happens when you have n starting numbers and you generate a sequence where the next number is the mean of the last n numbers.

