(1)
f(x) =x-sinx f(0) =0 f'(x) =1-cosx0.

Hence f(x)0 for all x0 that is xsinx for x0.

(2)
f(x) =cosx-(1- x2 2 ) f(0) =0 f'(x) =-sinx+x0   by(1)

Hence cosx1- x2 2 for x0.

(3)
f(x) =(x- x3 3! )-sinx f(0) =0 f'(x) =1- x2 2 -cosx0   by(2)

Hence sinx(x- x3 3! ) for x0.

(4)
f(x) =cosx-(1- x2 2! + x4 4! ) f(0) =0 f'(x) =-sinx+x- x3 3! 0   by(3)

Hence cosx(1- x2 2! + x4 4! ) for x0.

(5) This process can be repeated indefinitely to give the Maclaurin series, valid for all x (in radians)
cosx=1- x2 2! + x4 4! - x6 6! +...


sinx=x- x3 3! + x5 5! - x7 7! +...