
## **Triangle in a Triangle**



Let the area of triangle XYZ be  $\Delta$ , and the smaller triangles be  $\Delta_1$  through  $\Delta_4$ , as above.

The area of the large triangle can be found as  $\frac{1}{2}bc\sin\alpha = \Delta$ .

The proportions into which each side of the large triangle has been split means that, the base of  $\Delta_1$  is  $\frac{1}{3}$  the length of the base of the large triangle, and the sloping side  $\frac{2}{3}$  that of the large triangle. So the area of  $\Delta_1$  is  $\frac{1}{2}\frac{b}{3}\frac{2c}{3}\sin\alpha=\frac{2}{9}\Big(\frac{1}{2}bc\sin\alpha\Big)=\frac{2}{9}\Delta$ . The same holds for triangles 2 and 3. So  $\Delta_1=\Delta_2=\Delta_3=\frac{2}{9}\Delta$ 

The area of the inner triangle, triangle 4, is therefore  $\Delta-3\times\frac{2}{9}\,\Delta=\frac{1}{3}\,\Delta$  .